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Abstract. In this letter we apply the methods of our previous paper, hep-th/0108045, to noncommutative
fermions. We show that the fermions form a spin-1/2 representation of the Lorentz algebra. The covariant
splitting of the conformal transformations into a field-dependent part and a #-part implies the Seiberg—

Witten differential equations for the fermions.
1 Introduction

This letter is an extension of ideas of our previous paper
[1] to noncommutative fermion fields. We define a noncom-
mutative version of (infinitesimal, rigid) conformal trans-
formations and show that they leave the noncommutative
Dirac action invariant. The conformal operators and non-
commutative gauge transformations form a Lie algebra
(a semidirect product). However, since gauge transforma-
tions involve the *-product (and thereby the noncommu-
tative parameter ) one immediately sees that the indi-
vidual conformal operators (field- and 6-transformations)
commuted with gauge transformations do not close in the
above Lie algebra. There exists a certain splitting of the
combined conformal operators into new individual com-
ponents so that the commutator of gauge transformations
with them is again a gauge transformation. From this new
splitting we derive the Seiberg—Witten differential equa-
tions for the fermion fields.

In general one should distinguish between observer and
particle Lorentz (or more general, conformal) transforma-
tions, which are inequivalent when one considers back-
ground fields equipped with Lorentz indices, such as the
noncommutative parameter #°. In the following we solely
refer to “observer” Lorentz transformations. Please refer
to [1] and references therein for further details.
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As stressed in our previous paper [1] the above men-
tioned splitting of conformal transformations in a dynami-
cal (field) and a background (0) part is the unique splitting
which leads to a gauge-invariant breaking of “particle”
Lorentz transformations.

2 Commutative case

We recall from our previous paper [1] the commutative
Ward identity operators of primitive conformal' transfor-
mations of the gauge field A,,:

0
WE;T = /d4x tr (aTA#%> , (1)

Wf‘{;aﬁ = /d4a? tr((guaAg — gupAa + 2,084,

5
— .’L'ﬁaaAH) (SAL>7 (2)
5
wh .= /d% tr ((A,L +x565AM)5A) : (3)
)

The commutative (primitive) conformal transformations
of fermions 9 and 1) = 1f4° are given by

-
Wier = /d4:c <<5‘; Tw> + <aw§;>> : (4)
—

)
Wi = /d‘*:c <<5¢ (2005 — 25041

+ 3baalv)) )

! In the following the term “conformal” will always refer to
the rigid transformations as introduced in [1]
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+ <<Iaaﬁ¢—x58 - 1/)[%%]) §b>>
wp = [ (@ ¢ 1"*””68“”»
() o

where the bracket (,) indicates the invariant product in
spinor space and the trace in color space.
The Dirac action

5o = [t (B0, —i4) - mv). (0

is invariant under a gauge transformation Wg_w \ with
G G G
Waxipa = Wais + Wiy,

W= e (@a-ia ) ®

v ol () ol

Furthermore, we have invariance under translation
Wiy, and rotation Wi, ., and additionally, for m =

0, under dilatation WE s where

Wg+1/);7‘ = WE;T + Wzg;rﬂ
Wit pap = Wiias + Wiap,
D D D
WA+1¢;:WA +Ww (9)

3 Noncommutative case

The noncommutative generalization is obvious. The non-
commutative conformal transformations of the gauge field
[1] and fermions are given by

S i
Wi, = /d x tr (aTA”aA) , (10)
1 .
Wi o5 = /d4x tr<<2{xa78,3AH}* (11)
1 ]
- 5{@3, u} "‘guaAﬁ_guﬂA )(5 H)v
Wb .= /d4xtr lx aA} + 4, 0 (12)
A et 05 A
e
> -7
wT :/ orb—= ) |, 13
e fee({es) (i) oo
WE;aﬁ :/ <<5 (za*(?m/}—xg*aai/)
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1 b i . p
29ap8p85w + Elggpapaaw + 1[7&; 73]1/J> >

n <(aﬁz/§*a:a — Otz + %eaﬂapaﬁi

1 2 1= ?
_ Z Vs - , 14
00 = 3] 5w>> (19
5
Wllpj = << ( 1/)+3: *85¢>>
+ <(21Z+0512*x5> ?>> (15)
oY
The noncommutative Dirac action is defined by
Sp = /d4x <zZ * (iv“ﬁu — m)z/;> , (16)
where
uw 8,ﬂﬁ - i/AlH * z[},
Dy = 0p+ it A, (17)

are the noncommutative covariant derivatives in the (anti)
fundamental representation. The action (16) is invariant
under noncommutative gauge transformations

G G G
Wiioa=Wis+Wis

WE;\:/d4xtr (DN;\(SZM),
. .7 S o
e iz —ith % = = (IA
vis- fae () (50e9))

where D,e = 9,  —i[A,, ], is the noncommutative co-
variant derivative in the adjoint representation.

Let us first compute the rotational transformation of
the action (16). We find

(18)

Wi

R\
AaﬁJrW )2D

aB

= /d4x <9ap <—; <1Z*’Y#ap‘4u *851L>
+ % <1Z * YRI5 A, % 8p1/3>>

=+ Gﬂp <; <1/Q;*7“8p121“ *8a1/3>

% <zZ * YO0 A, % 8,)1[1>>> .

We must also take the rotational transformation of 6+
into account,

Wy 0" =0
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W50 = 010" — 6560,) + 640", — 640",

W0 = —201, (19)
which acts according to
WU V)= (WyU)*V +Ux (WyV)
+ 5 (W§0m) (0.0) = (0,V),  (20)

on the x-product in the gluon—fermion vertex [ d4m<1z *

fy“flu * ). This yields the invariance of the noncommu-
tative Dirac action under complete rotational transforma-
tions,

(WE s+ WE 5+ Wiiap)Ep =0, (21)
under the assumption

The complete dilatational transformation of the action
(16) is given by

(WZ +Wp + W) = /d4m m<12*¢>. (23)

In summary we have

Wg+1/3+9;TZD =0,
W§+w+9 052 =0,
WX 502D = m%, (24)
where
W,:xr+1p+9 i WE;T + WzﬁT;T + W
W00 = Whas + Wiias + Wolas:
W2 oig = WE+ WD+ Wy (25)

The Casimir operators (mass and spin) related to the
representation of (13) and (14) are

m*) = —gT W] Wi .
s(s + 1)m?) = —nggL;TW;;L;Uiﬁ, (26)
where
W:;L;Uw _ ; oTaBWT Wi{aﬁ
i O CRTR )
is the Pauli-Ljubanski vector. This yields
m*) = 070, (28)
s(s+1)m* = g%( 79797 + 29779 g"7)
X [ 18] 1y 15105 07
= _Zaféw, (29)

showing that (13) and (14) are a spin-1/2 representation.
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3.1 Seiberg—Witten differential equations

As in the bosonic case we derive the Seiberg—Witten dif-
ferential equations via a covariant splitting of W7

A+w+0
? ?
WA+@Z;+9 WA+w+W9f +¢+W9,(30)
G G
[WA+¢)’ WA+1/1 A] WA+¢ ,\AW’
G G
W, WA+w sl = WAW v (31)

whereby we require (31) to be valid on both /1# and .
To find the sought for splitting we first apply the ansatz

of [1]:
. . 5
WA;T -Hb At + [ d%x tr m A , (32)
- 1 . .
Wiaﬁ = W§+w )\ /d4l‘ tr ((2{)(&? Fﬂp,}* (33)

1 ~ “ )
— AXp, Fapte — W 50°7) 200, | — |
3 (X B~ Wi >M)MH>

1 - A
=W o +/d4x tr((Q{X‘;,Fgﬂ}*

— WP(0°) 20y ) 63) (34)

where we replaced W 50 by W Qpop is a polyno-

A+1l1 P
mial in the covariant quantltles 0,F,D...DF, antisym-
metric in p, o, of power-counting dlmensmn 3, and ex-
presses the freedom in the sphttmg In the followmg we
set Qpa » = 0. The parameters A are unchanged and given

by (1]
5\3‘ = AT’
R 1 I 1 PN
= Lo+ 024, A0, - Lo 4024, 400,

1 ~
AP = §{$67A5}*. (35)

We write down a covariantization of (

15),
=
o) ()
TR 4 ? 1 N ~ A A
Wul;aﬁ:/d r M( (Yo, Y8190 + Xo % D)

DD~ Db 07D,0,0) )

<

0,,D,Dg

5 e
) -

<¢[’Ym7ﬂ] Dgtp » Xa

S

(o9
-



494

F

D _ 4 0
Ww —/d x<<(5z/3
+ i@””ﬁ’pg*z[}>>

32 2 = 1 = . K
' <(21”+DW*X5 -3 ) (sw>> |

where the covariant coordinates [2] are defined by X# =
zH 404" A,. We define W/?ui[, as the sum of (32)—(34) with

(36)—(38). Now it is easy to evaluate W, = W'

- A+
WA—HZJ =W, (677)(d/d#r?), with

(30+2 bav

(38)

N — ~
d 0 4 dA, & 5 dy
dgeo " 0fr +/d ‘ (tr (df”"’ Mu) N <5zﬁ d9p“>

(22

which yields the Seiberg-Witten differential equations

(39)

dA Loo o7 - Lei 94 o
d@ﬁi - _g{ApaaoAu +Fou}* T g{AWaPA“ +F/’“}*’
(40)
dd 1. Y b A AT x4
depo' = —EAp*ao.w—F EAU*ap¢+ g[Ap7AO']**¢
1. coa oy L Do
= Ay x (05 + Do) + SAg (9,0 + D).
(41)
Wi
T 715‘,,1/; * A, + Zapl/J * A, + gq/)* [Ap, Asls
1 ~ ESN ~ 1 = = 2 n
E_g(aaw+Daw)*AP+§(apw+Dpw)*Ag
(42)
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The differential equation (40) was first found in [3]. Equa-
tion (41) was for noncommutative QED to lowest order in
0 first obtained in [4]. It follows from the algebra given
in [1] (extended to include fermions) that W; satisfies au-

. . . . 4 ? G _
tomatically the second identity in (31), [W,, WA+¢?;5\] =
Wf&iu}'i? so that the #-expansion of the action (16) is in-

g
variant under commutative gauge transformations. One
checks the identity

2 d

PO Po | =
A+p+6’ 0 dore

(43)
for the theory enlarged by fermions, which means that
the @-expansion based on (40) and (41) leads to a commu-
tative action invariant under commutative rotations and
translations and with commutative dilational symmetry
broken by the mass term.

4 Conclusion

Following the ideas of [1] we have constructed a represen-
tation of the infinitesimal rigid conformal transformations
for noncommutative fermion fields. We have shown that
the requirement that the individual operators of #- and
(A,i)—transformations commute with gauge transforma-
tions up to another gauge transformation leads directly to

the 6-dependence of the fermion fields first found in [4].

References

1. A.A. Bichl, J.M. Grimstrup, H. Grosse, E. Kraus, L. Popp,
M. Schweda, R. Wulkenhaar, hep-th/0108045

2. J. Madore, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J.
C 16, 161 (2000) [hep-th/0001203]

3. N. Seiberg, E. Witten, JHEP 9909, 032 (1999) [hep-
th/9908142]

4. A.A. Bichl, J.M. Grimstrup, L. Popp, M. Schweda, R.
Wulkenhaar, hep-th/0102103



